
DrSax.js: a JavaScript based Unified Web Audio Library
and Framework

Euyshick Hong
MARTE Lab.

Dongguk University
Jung-gu Pil-dong, Seoul, Korea

antaresax@dongguk.edu

Jun Kim
MARTE Lab.

Dongguk University
Jung-gu Pil-dong, Seoul, Korea

music@dongguk.edu

ABSTRACT

Web audio technologies have recently been greatly developed by

web developers and software companies, providing web audio

libraries and frameworks for audio processing and synthesizing

using JavaScript. JavaScript has developed into flexible

programming language with front end and server side capabilities,

providing dynamic interactions with the web. This paper describes

a united sound library and framework system developed using

web technologies with JavaScript for musical instruments and

voice through a web audio API for artistic expression and various

musical applications.

CCS Concepts

• Applied computing➝ Engineering • Applied computing➝
Sound and music computing •Computer systems organization.

Keywords

Web Audio library; JavaScript; web audio API.

1. INTRODUCTION
Web technologies have rapidly developed with the advent of

JavaScript and HTML5, including a wide range of frame-works,

libraries, and multimedia web applications that take advantage of

web audio API1 [2][8][10] and the server side platform [4]. Using

JavaScript [7], web audio API can build novel web audio

applications with multimedia factors for audio processing,

synthesizing, visualization, and media control for web based

applications.

Several of interactive networking systems have been developed.

For example, Play the light of Monet [5]2 allows collaborative

works in real-time, such as musical ensembles where players can

discuss each other’s playing real-time at the same location, or

spatially distant, using instrument interfaces to mobile phones,

tablets, laptops, or desktop. Users access the web application

through the internet. Such methods for musical collaboration can

1 www.w3.org/TR/webaudio

2 https://youtu.be/uZLOY8onwz4

be rapidly built using various web audio API and libraries thanks

to current computer speed and technology. However, most current

web audio applications and frameworks struggle to correctly

integrate the API and libraries within their frameworks.

Many web audio libraries and frameworks have been created to

extend web audio applications, and many new web audio

applications have been provided. These have a number of

common issues and advantages. Using a library has the advantage

of helping to quickly and easily develop new web applications,

allowing many people to enjoy it simultaneously. However, it is

difficult to properly interface with another libraries due to name

and function overlaps within the various libraries. Web audio

applications require visualization and data controls to enable

multiple user interactions, such as dials; buttons; slides; and pitch

and volume meters. However, the audio libraries do not support

these extra functionalities. Thus, to correctly incorporate various

musical applications, it is necessary to use a unified web audio

library and framework that includes visualization and provides a

comprehensive base for the applications. Therefore, we developed

a totally new web audio library and framework, called DrSax.js,

to resolve these issues. DrSax.js is provided as the JavaScript

library and realizes a united web audio library and framework,

making it possible for users to quickly and easily build web

applications to control real-time audio processing, visualization,

sound effects, and media installation without requiring further

libraries or APIs. It is designed for use by non-specialists, with a

particular focus on artistic emotions, and is suitable for not only

web audio applications, but also various other interactive work.

2. RELATED WORKS
Web audio libraries and frameworks with web audio APIs have

been provided from various sources. Typical examples include:

Interface.js [13] enables control of web sound applications

through a server interface to mouse, touch screen, and gesture

capable PCs or portable devices. Gibberish.js [13] is an optimized

sound processing library that provides a useful framework system

for audio synthesizers that can be used for PC and mobile phones.

Some other libraries have taken different approaches. WA-AX [12]

[9] provides and expanded JavaScript library and framework to

enable audio processing based with a web audio API, including

useful features such as an audio frame-work for web based

applications, and supports development of various web based

work faster and with less coding. It is modular and extensible

Tuna.js [1] is a library of audio effects and processing for web

audio applications. It can be employed to build sound processing

effects and can connect other audio units by API nodes.

Audiolib.js [6] is a novel audio processing library for web

frameworks focused on sound effects that builds the audio

framework in a manner comfortable for musical expression.

WebGL [11] was developed for visual control using JavaScript,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.
ICACS '17, August 10–13, 2017, Jeju Island, Republic of Korea

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5284-0/17/08…$15.00
https://doi.org/10.1145/3127942.3127953

74

providing a cross-platform framework for 3D graphics APIs based

on OpenGL ES 2.0, exposed through the HTML5 Canvas

elements. Extree.js [3] is a JavaScript 3D library that can facilitate

easy interaction for visual work through the web. Figure 1 shows

a simple web based FM synthesizer application developed with

DrSax.js library and framework. It is available for free download

at: https://drsax.github.io/DrSAX/examples/demo_fm.html

Figure 1. Web FM synthesizer with DrSax.js.

3. DESIGN CONCEPT OF DRSAX.JS
DrSax.js’s design concept was to provide a useful web audio

application through library elements and frameworks for sound

processing and interactive working, that was easy to use without

requiring extra libraries or frameworks for various web

applications. Thus, it would provide a unified web audio library

and framework to build web applications.

3.1 Sound Units
DrSax.js audio units can be separated into four parts. Sound units

consist of synthesizers for Frequency modulation, Amplitude

modulation, and subtractive modulation; and basic oscillators.

These provide not only basic synthesizer roles, but also sound

processing to connect multiple input sources, such as microphone,

audio file, or various oscillators. Audio units are sound/audio

frameworks. An uploaded audio file can be controlled by various

control functions.

Table 1. Sound frameworks

Mode Type

 Frequency modulation

synthesizer Amplitude modulation

 Subtractive modulation

 basic oscillator

 audio player
audio file audio upload

 audio control

sound input mic input

 tunner

 equalizer
effects reverb/delay

 compressor

 stereo panner

Sound input units include basic microphone input and tuning

frameworks. Tuning is a significantly useful function in the

musical area, providing sound processing elements, such as

equalizers, reverb and delay, compressor, and stereo panning.

These are mainly effect elements in sound frame-works.

Subsequent sections discuss main sound units and the detailed

method to build novel web audio applications.

3.2 Sound Visualization
Sound visualization is a useful method to monitor changes in

volume, pitch, and timbre without requiring amplifiers or sound

outputs. For example, sound input checks are of-ten required

before a stage concert or recording. DrSax.js supports frequency

and amplitude domain sound visualization. The HTML5 has

Canvas API is incorporated to provide web based visualization

canvas control for images and videos, as well as microphone input

and visualization. An example application highlighting these

features is freely available at:

https://drsax.github.io/DrSAX/examples/ demo_mic.html

Figure 2. Mic input and visualization.

Table 2. Visualization and data control frameworks

Mode Type

visualization frequency domain

 amplitude domain
value control data function control

 data toggle control

3.3 Data Control
Data controllers were designed for real-time control of different

playing styles, which is and essential element for interactive

frameworks. Two types of data controller are provided: on/off

toggle can control frequency, volume, and modulation parameters

without requiring extra functions; and volume and pitch control is

a toggle API that enables control of on/off frameworks in the

application.

Table 3. Data value control

Mode Type

control value frequency range

 amplifier range

 modulation range

toggle control mic/sound/osc on/off

 frequency input(piano keyboard)

4. PROGRAMMING
Libraries and frameworks incorporate various type and features.

The major focus for DrSAX.js was that its use and programming

should be fast, easy, and simple. It must also provide natural

coding without requiring further libraries or frameworks to ease

75

creating novel musical works. The final DrSax.js library is a

modern web audio framework that is smaller, faster, and easier to

learn and use than current web audio frameworks.

4.1 Implementation with DrSAX.js
1

<script src= " DrSax.js " > </script > 2
3

<script >

4

5
var DSX = new DSX 6

7 var osc = new DSX.Osc ({
8 type: " sine " ,freq:700 }) ;
9 var am = new DSX.AM ({

10 mod_type :" sine "
11 , modfreq:200 , depth:0.5 , gain:0 . 5 }) ;
12 var sax_am1 =new D S X . v a l u e C h a n g e ("am1 "

13
,osc.freq) ;

var sax_am2 =new D S X . v a l u e C h a n g e ("am2 "

14
,a m . m o d f r e q) ;

var sax_am3 =new D S X . v a l u e C h a n g e ("am3 "

15
,am.depth) ;

var sax_am4 =new D S X . v a l u e C h a n g e ("am4 "

16
,am.gain) ;

am . get (osc)

17

18 a m . c o n n e c t (gain)
19 g a i n . c o n n e c t (DAC)
20 os c. st ar t () ;

21

22
am.stop () ; // amp off 23

24

</script >

25

Listing 1: DrSax.js setting and synthesizer

To use DrSax.js in web applications, simply download Dr-Sax.js

from the tutorial site and add a script tag to DrSax.js in the web

page, e.g. line 2 in Listing 1, then declare "var DSX = new DSX"

on the top. Listing 1 shows an example of Amplitude modulation

(AM) synthesizer code. Line 7 shows a sound oscillator with type

and frequency. The AM synthesizer has 4 data values and declare

from 12 to 15 and to control the frequency, modulator, depth, and

gain parameter. Line 17 shows how to connect an oscillator and

AM with gain. Lines 20 and 23 show how to play and stop.

4.2 United Frameworks

4.2.1 Sound File Controller

1 <input id="inputS" type="file" accept="audio/*">
2
3 var DSX = new DSX;
4 var gain = new DSX.Amp({gain: 0.5});
5 var file_upload =new DSX.BGsound('inputS');
6 var st =new DSX.valueChange("gain",gain.gain);
7 var play = document.querySelector('.play');
8 var stop = document.querySelector('.stop');
9 play.onclick = function(){
10 file_upload.connect(gain)
11 gain.connect(DAC)
12 }
13 stop.onclick = function(){
14 file_upload.stop();
15 }

Listing 2: Audio file control

DrSax.js supports tree-type sound control units and frame-works.

This provides sound file controls much as an audio player: play,

stop, pause, and volume control. Listing 2 shows example code to

control a sound file. Line 1 is the input tag and line 3 declares

"DSX" the code constructs. Lines 5–8 show setting and

controlling the uploaded gain of a sound file, play and stop. Other

sound file units have similar patterns, but unique features. We can

use it by various type.

4.2.2 Sound Input and Visualization
Visualization depend on sound volume and pitch that to get a

sound input source. The microphone constructs in line 3 (Listing

3) have initial values set by object literals. Listing 3, lines 2–4

show how to set microphone input and visualization, with line 4

immediately setting a color based on the received data, enabling

interactive visualization in real-time using the HTML5 support

canvas API. The sound balance can be mixed before playing or

recording. Lines 7 and 8 show how to connecting sound inputs to

gain and sound out(DAC).

1 var DSX = new DSX;
2 var gain = new DSX.Amp({gain: 0.5});
3 var saxInput = new DSX.Mic();
4 var frequrncy_canvas = new DSX.freqDomain('canv', 'red');
5 frequrncy_canvas.getAnalyser(gain);

6
7 saxInput.connect(gain);
8 gain.connect(DAC);

Listing 3: Mic input and visualization

4.2.3 Effects Data Control
Listing 4 lines 1–4 show how to configure a 500 Hz saw-tooth

oscillator with amplitude gain value 0.5. Line 5 shows how to set

delay effects and data values, such as delay time (200ms) and

feedback (0.45 s) key value simple that much key data parameters

make chaos to control in real-time. Lines 8–10 show how to

connecting osc to gain to delay to DAC(output). The example

includes various effects: re-verb, delay, panning, equalizer, and

compression, and can mix each effect and harmony to expand

sound processing.

1 var gain = new DSX.Amp({gain: 0.5});
2 var osc = new DSX.Osc({
3 type:"sawtooth",freq: 500
4 });
5 var Delay = new DSX.Delay({
6 delayTime : 200, feedback: 0.45,
7 });
8 osc.connect(gain);

9 gain.connect(Delay)

10 Delay.connect(DAC);

Listing 4: Effects value control

5. USES OF NOVEL FEATURES

5.1 Mobile Instruments and Effecter
DrSax.js facilitates creating web based wind instrument using

sound input frameworks, such as Ocarina3 and Webxophone4. The

3 Ocarina : iPhone application into a flute-like instrument by Ge

wang

4 Webxophone: web saxophone instrument by Euy Shick Hong

76

result is a mobile wind instrument application that accepts sound

input from microphone or speaker-phone on a mobile phone.

Applications using DrSax.js can achieve harmony web audio

technology with a built-in de-vice in mobile that touch screen,

speakerphone, mic-phone, built-in sensors. The application can

controlled octave frequency by an angle in a smart-phone that up,

normal and down, and sound input pitch and volume in mobile or

touch portable device. Incorporating this technology in a smart-

phone allows development of novel web wind instruments and

various works and harmony another multi-media works.

Figure 3. Dr.Saxoman: interactive web audio application with

Dr.saxophone II.

5.2 Multi-media Works
Dr.Sax.js is not limited to web audio applications alone, but is

also useful for various multimedia applications. The de-signed

includes four frameworks, synthesizing the web audio API,

controlling sound files, sound visualization, and data control.

Thus, Dr.Sax.js can be combined with what to produce novel

multimedia platforms for media art installations or interactive

performances, such as discussed in the introduction (Play the light

of Monet [5]).

6. PERFORMANCE WORKS

6.1 Interactive Performance System
An example interactive web audio network system was con-

structed using DrSax.js, including a web audio effector -

(Dr.Saxoman) and a hybrid saxophone interface (Dr.Saxophone

II) in Figure 3, as shown in The integrated saxophone system can

control the sound processing data value in Dr.Saxoman in real-

time that wireless networking sys-tem. The example system was

used for an interactive live performance “A White Night with

Dr.Saxoman and Dr. Saxophone II on stage by Euy Shick Hong.

The video of the performance is available at: "Seeing Sound

Listening Image -Interactive Performance "2016.11.18 in Lee Hae

Rang theater.5

6.1.1 Dr.Saxoman
Dr.Saxoman is a web audio application for saxophone or wind

instrument and voice that supports sound input, sound tuner,

visualization, audio file, recording, effects, equalizer, compressor,

AM, pitch shift, reverb, delay, and stereo panning. All data values

can be controlled mouse or Dr. Saxophone II and mobile in real

time.

• sound input : mic input, tuner.

5 https://youtu.be/THJLy0GvAso

• effect : EQ, compressor, pitch shift, reverb, delay, panning.

• synthesizer : FM, AM, subtractive.

• interactive system : netwoking with DrSaxophone II or

mobile phone.

6.1.2 Dr.Saxophone II
Dr.Saxophone II is hybrid saxophone interface to play various

performances in a multi-media performance that expanded

Dr.Saxophone that was developed and presented in The 2016 3rd

International Conference on Systems and Informatics(ICSAI

2016). The interface device is controlled by a natural gesture that

fingering and lift up and down with saxophone. The data of

interface sensors are digitized through the note fingering and body

gestures during playing. We can be applied to other wind

instruments or voice for various media works such as harmony

with Dr.Saxoman on web(video :https://youtu.be/do_yuLdVTCo).

6.2 Web application demonstration
The Dr.Sax.js tutorial provides a simple web demonstration, as

detailed in Section 8. So, we can find web demo application at

each article link in tutorials. DrSax.js presents simple code and

demo web application and detail information.

7. CONCLUSIONS
Web developers and sound artists have used web based audio

technologies to developed many audio libraries and frameworks

for audio processing and synthesizing using JavaScript. This

paper described a united web audio library and framework system

developed in JavaScript for interactive real-time integration of

saxophone and voice through the web audio API. The application

is embodied in DrSax.js and is suitable to build web audio

applications without requiring extra libraries or frameworks.

The web based audio applications can easily control real-time

audio processing, visualization, sound effects, and media

installation, and work well for expressing artistic emotions and

interactive musical works.

8. TUTORIAL AND WEB AUDIO APPLI

CATION WITH DRSAX.JS
DrSAX.js tutorial site and application in Github site.

• DrSax.js tutorial site:

https://drsax.github.io/DrSAX/lib.1.8.html.

• DrSax.js link in Github:

https://drsax.github.io/DrSAX/DrSax.1.7.0.1.2.js.

• DrSaxoman application site:

https://drsax.github.io/DSX/drsaxjs.1.7.0.0.html

Web audio application with DrSAX.js.

• simple sound oscilattor:

https://drsax.github.io/DrSAX/examples/demo_osc.1.0.ht

ml.

• Delay and Attack and release:

https://drsax.github.io/DrSAX/examples/demo_attack.html.

• Stereo panning:

https://drsax.github.io/DrSAX/examples/demo_pan.html.

• Reverb and Attack and Release:

77

https://drsax.github.io/DrSAX/examples/demo_reverb.htm

l.

• FM(frequency modulation) Synthesizer:

https://drsax.github.io/DrSAX/examples/demo_fm.html.

• AM(amplitude moduration) Synthesizer:

https://drsax.github.io/DrSAX/examples/demo_am.html.

• Simple Subtractive Synthesizer:

https://drsax.github.io/DrSAX/examples/demo_sub.html.

• Audio File upload and 5 band EQ:

https://drsax.github.io/DrSAX/examples/demo_eq. html.

• Sound file upload player:

https://drsax.github.io/DrSAX/examples/demo_play.html.

• Audio File upload:

https://drsax.github.io/DrSAX/examples/demo_play2.html.

• Audio Player and Speed control:

https://drsax.github.io/DrSAX/examples/demo_playspeed.

html.

• Mic Input and frequency domain:

 https://drsax.github.io/DrSAX/examples/demo_mic.html.

• Mic Input and pitch tuner:

https://drsax.github.io/DrSAX/examples/demo_tune.html.

• Dynamic Compressor:

https://drsax.github.io/DrSAX/examples/demo_comp.html.

• Mic Input and amplitude domain:

https://drsax.github.io/DrSAX/examples/demo_ampdomai

n.html.

9. REFERENCES
[1] An audio effects library for web audio.

https://github.com/Theodeus/tuna.

[2] Rogers, C. web audio api-w3c working draft.

https://www.w3.org/TR/webaudio.

[3] Javascript 3d library. https://github.com/mrdoob/three.js/.

[4] Node.js. https://nodejs.org.

[5] Play the light of monet : interactive web audio networking

system. https://github.com/drsax/monet.

[6] A powerful audio tools library for javascript.

https://github.com/jussi-kalliokoski/audiolib.js.

[7] tutorial of javascript,html, css. https://www.developphp.com/.

[8] Web audio api extension. https://github.com/hoch/waax.

[9] Web audio api extension. https://github.com/hoch/waax.

[10] Web audio tutorials -middle ear.

http://middleearmedia.com/category/web-audio- tutorials/.

[11] Webgl - opengl es 2.0 for the web.

https://www.khronos.org/webgl/.

[12] Choi, H. and Berger, J. Waax: Web audio api extension. In

Proceedings of the 13th Conference on New Interfaces for

Musical Expression(NIME-13), Daejeon, Korea,, 2013.

[13] Roberts, C., Wakefield, G., and Wright, M. The web browser

as synthesizer and interface. In Proceedings of the 13th

Conference on New Interfaces for Musical

Expression(NIME-13), Daejeon, Korea,, 2013.

78

